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Suggested Solution to Exercise 6

1. Find the tangent hyperplane passing the given point P on each of the graphs:

z=2a2%—9y% P(2,-3,-5).

(b) )
y:ZfIng, P(]-a]-a]-)v
z
(c)
w = sin(z? + 72);  P(0,1,1,0) .
Solution.

(a) zis a function of x and y. Its gradient is Vz = (2z, —2y). The normal vector is given
by (—2z,2y,1). At (2,-3,-5) it is given by (—4,—6,1). The tangent hyperplane at
(2,3, —5) is

<_47 —6, 1) : ((33, Y, Z) - (27 -3, _5)) =0,
ie.—4x — 6y + 2 =5.

(b) y is a function of x and z. Its gradient is given by Vy = (—1/z,1+41/2). The normal
vector is given by (1/z,1,—1—1/z). At (1,1,1) it is given by (1,1, —2). The tangent
hyperplane at (1,1,1) is

(17 1’ _2) : ((1:73/’ Z) - (1) 17 1)) = 07
ie.x4+y—22=0.

(c) wis afunction of x,y and 2. Its gradient is given by Vw = (2z cos(z?+m2), 0, 7 cos(x?+
7z))), so Vw(0,1,1) = (0,0, —m). The normal vector is (—Vw, 1) = (0,0, 7,1). The
tangent hyperplane at (0,1,1,0) is

(0,0,m,1) - ((x,y,z,w) — (0,1,1,0)) =0,

that is, mz + w = 7.

2. Find the tangent plane and the normal line of each of the surfaces at the given point:
(a)

zy? —yz? +6xyz=6, P(1,1,1).

(b)
wlyz — et =2 P(1,-1,1) .

You should verify that it is a surface near the given point first.

Solution.

(a) Let f(x,y,2) = 2y® —y2? 4+ 6xyz. Then Vf = (y? +6yz, 22y — 2% + 622, —2y2 + 61y)
and Vf(1,1,1) = (7,7,4) # (0,0,0). By Theorem 6.2 f = 6 defines a surface near
(1,1,1). The tangent plane at (1,1,1) is given by

(7,7,4) - ((z,y,2) — (1,1,1)) = 0,
that is, 7z + 7y + 4z = 18. The normal line at (1,1, 1) is given by
(1,1,1) +(7,7,4), teR.
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(b) Write g(x,y,2) = 2?yz — e®*1. Then

zy+1 2 zy+1 .2
) )

Vg = (2zyz — ye x°z — e x%y) .

We have Vg(1,—-1,1) = (—1,0,—1) # (0,0,0). Hence g = —2 defines a surface near
(1,—1,1). The tangent plane at (1,—1,1) is given by

(_Loa _1) ’ ((x,y,z) - (17 _17 1)) =0 ’
or  + z = 2. The normal line at (1,—1,1) is given by
(1,-1,1) +t(-1,0,—-1), teR.

3. Use implicit differentiation to find

(a) y" and y” for 22 + 22y — y? = a?.
(b) y/ and y// fory—(SSiny:x, § e (0’1) .

The solutions are allowed to depend on .

Solution.
(a) Differentiate both sides with respect to x to 2 + 2zy — y? = a? yields
2z + 2y + 2zy — 2yy’ =0,
S0

;) T+Y
Yy = .
y—x

One more differentiation gives
2+ 2y + 2y + 221" — 2(¢)? — 2yy” =0,
that is,
y// _ 1+ 2y — 3/2
y—x
You may plug in the expression of 3’ so that the right hand side contains z and y
only, but this is optional.

(b) Differentiate both sides with respect to z to y — dsiny = z yields
y —1y'dcosy =1,

which gives
, 1
Y=
1—4Jcosy

One more differentiation gives
Y —y"Scosy + (y)*dsiny = 0,

that is,
" 5y/2 siny
dcosy —1°

4. Use implicit differentiation to find the first and second partial derivatives of z = z(z, y):
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(a)
r+y+z=¢€",
(b)
sin(x +y) —6cos(y + 2) =x .

Solution.

(a) First we get 1+ z, = z,€*, or

B 1
=
Then 2, = 2z2€° + (2,)%e* which gives
(Zx)QeZ
Zgp = )
xrxr 1 - ez
Similarly we get
1
S
and
(Zy)Qez
Zyy = 20— .
vy 1—e*

Finally, differentiate both sides with respect to y to 1+ z, = z,e® yields

1 —cos(x +y)
Zg = —————= .
6sin(y + 2)
sin(z + y) — 6 cos(y + 2)22
6sin(y + 2)
_cos(z +y) +6sin(y +2)
6sin(y + z)
sin(x +y) — 6cos(y + 2)(1 + 2z,)?
6sin(y + 2) '
sin(z 4+ y) — 6 cos(y + 2) 2z (1 + 2)
6sin(y + 2) '

Zyxx =

Zy =

Ryy =

Zpy =
5. Find all first and second partial derivatives of y = y(x, z) satisfying

22y — 6’z 4+ 222 =8,
at (1,1,—1).

Solution. Differentiate both sides with respect to = to %y — 6y?z + 22 = 8 yields

2ay + 2yy — 12yyez + 2> =0
Therefore, at the point (1,1, —1),

22y + 2° 3

- 12yz — 22 13

Ya
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Similarly,
—6y? + 212 8
Y= 5. 7 3 = 79
12yz — x 13
and
2y +day. —12(y.)’z 368
Yoz = x2 — 12yz 2197
L 12(y.)%2 — 12yy, + 22 1390
Yoz = 12yz — 22 = 2197
2oy, — 12y2y.2 — 12yy, + 22 213
Yoz = 12yz — x2 - 2197

(Hope the numbers are correct.)

6. Find the condition that z can be viewed as a function of z, y in the relation F(zz,yz) = 0.
Then find z, and z4,.

Solution. Let G(z,y,2) = F(u,v) = F(xz,yz). By the chain rule,
G, =xaF,(xz,yz) + yFy,(zz,yz) .

Now, by Implicit Function Theorem, z is a function of x,y in the relation G(z) = 0 if
G, #0,ie.
xFy(rz,yz) + yFy(xz,yz) # 0.

When this holds, differentiate both sides with respect to z to F(zz,yz) = 0 yields
F, - (z+xzy) + Fy - (yz2) = 0.

Therefore,
2Fy(xz,y2)

= CwFy(z2,y2) + yFy(z2,y2)

Differentiate both sides with respect to x to F, - (z + x23) + Fy, - (yz5) = 0 yields

Fuu-(z+xzx)2+Fuv-(z—i—:czx)(yzx)—l—Fu-(sz—l—wzm)—i—Fw'(yzx)(z+:1:z$)—|—Fw-(yzx)z—i—Fy-(yzm) =0.

Therefore,

Fuu - (Z + xz:c)g + Fup - (Z + :L'Zx)(yzx) +2Fy - 2z + Fyu - (yzx)(z + -sz) + Fyy - (ny)2
xFy +yFy '

Rxx =

7. Let ® be a function defined on the intersection of the zero set of two functions
g(x,y,2) =0, h(z,y,2z)=0.

Write down the condition that the intersection can be parametrized by x. Then find Ir
x

d*®

dx? -

Solution. By Implicit Function Theorem, the intersection is a curve parametrized by x

if

and

'gy 9z
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If so, letting (z,y(x), z(x)) be the curve of intersection parametrized by x, we differentiate
9(x,y(x), 2(x)) = 0 and h(z, y(z), 2(z)) = 0 to get

9z + GylYa + 9222 = 0,

hey +hyye +h.zp =0 .
Hence (yz, z;) can be expressed in terms of first partial derivatives of g and h. Similarly,
all the first and second partial derivatives of y and z can be expressed in terms of first and
second partial derivatives of g and h. Therefore,

d od 0P 0P

dx
and
2 2 92D 09
0 y(@)2@) = (57 + ayor T+ 520:7)
+<82‘I) +82‘I> 2+82¢’ +8(I) )
. T Rx a Yzz
O:U(?yy Oy? Ya Bzayy 8yy
+<82(I)z T A ¥ AL )
0x0z"" ayazyx To27T 0T

9% 020, 0%0

-~ Ox2 * Oy? Ya T 2%

+2W¢y+2W¢Z+2w¢yz
0xoy”" 0x0z"" oyoz""""
0P 0P

+ aiyyxx + £Z$x .

8. Explain why each of the following system defines a curve v(z) = (x(2),y(z),2) in R® and
then find the first derivatives of ~:

(a)
r+y+2=0, z+y>+z2t=1,

(b) ,
Pyt =52 wty+z=2 at(1,-12).
Solution.

(a) The Jacobian matrix associated to the functions g(z,y,z) = z +y + 2z = 0 and
h(z,y,z) =z +y*> + 2* = 0 is given by

11 1
1 2y 423 °

We claim that this matrix has rank 2 at each (z,y,z) € R? satisfying the system.

1 1
For, each (x,7,2) € R? satisfying the system, if 12 ‘ # 0, then the matrix has

1 1

rank 2; if 12y

‘ = 0, then y = 1/2. Therefore, since (x,y, z) satisfies the system,

we have
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which implies z* — z = 5/4. Now if 1 413 =0, then z = 47/3, and one checks
that 4=4/3 — 4=1/3 £ 5/4. Therefore b1 # 0 if L 0. As a result
1428 1 2y ’

this matrix is of rank 2 everywhere. By Theorem 6.5, the solution set always defines
a curve everywhere. When y # 1/2, the curve is parametrized by z : (z(2),y(2), 2).
Its tangent is (2'(z),vy'(2),1), where (2/,3') can be obtained by differentiating both
sides of the two defining functions g(z(z),y(z),z) = 0 and h(z(z),y(z),z) = 0 with
respect to z, that is, 2’ + ¢’ + 1 =0 and 2’ + 2yy’ + 423 = 0. We get

,:—2y—|—423 ,:—4z3+1
-1 YT Ty

1
(b) The Jacobian matrix associated to the functions g(z,y, z) = 2% + y? — 522 =0 and

hz,y,z) =x+y+2z—2=0is given by

2 2y —z]

1 1]
which is equal to )

2 -2 =2

1 1 1)

at (1,—1,2) Since ?
curve can be parametrized as (x(z),y(z), z). Differentiating both sides with respect
to z to g(z(2),y(2),2) = 0 and h(z(z),y(2),2z) = 0 yields 2zz’ 4+ 2yy’ — z = 0 and
+y +1=0. At P(1,-1,2), we have 22/ — 2y —2=0and 2/’ +¢y' +1=0. We
have 2/ = 0 and ¢y’ = —1. The tangent vector at P is (2/,4/2") = (0,—1,1) and the
tangent line passing through P is given by

2 0, the matrix has rank 2 at P. By Theorem 6.5, the
1

(1,-1,2) + (0,-1,1)t, teR.
Note. It cannot be parametrized in x.
9. * The spherical coordinates are given by
xr=rcosfsiny, y=rsinfsiny, z=rcosp,

where
r>0, 6€[0,2n), @el0,7].

(a) Give a geometric interpretation of this coordinates.
(b) Show that

z
r=+ax2+y2+ 22, G:arctang, and ¢ = arccos — .
x r

(c) Express f; and fz, in terms of f;, fs, and f,.

(d) * Show that the three dimensional Laplace equation

of o F
ox? = oyz 022
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in spherical coordinates is

lgqﬁa—er ! 82f+ ! asmaf =0
r2 or or r2sin p 902 r2sinp dyp 9084,0 )

Solution.

(a) For r =0, (z,y, 2) is the origin.
For r > 0, (x,%,2) can be regarded as a point on the sphere in R? with radius r. ¢
and 0 can be regarded the “latitude” and the “longitude” of (x,y, 2) on the sphere
respectively.

(b) (i)

22 + % + 2% = (rcosfsinp)? + (rsinfsin@)? + (1 cos p)?
rsin )?(cos? 6 4 sin” ) + (r cos p)?
( rsin p)? + (1 cos )2
=2

Therefore,
(ii) Dividing the first equation of the definition of spherical coordinates by the second
equation yields
Y — tand .
x

Therefore,

§ = arctan 2 .

x

(iii) Directly consider the third equation of the definition of spherical coordinates, we
have
z
( = arccos — .
r

(c) We omit this lengthy but straightforward computation.

10. * Let

Find yz, 22, Yor and 2z

d 1 d
Solution. Note that d—? =1- 2 Therefore, when t # +1, d—f # 0, and hence by Implicit

Function Theorem ¢ is a function of z, say ¢t = g(x) with

2 -1

Now we can regard y = y(g(x)) and z = z(g(z)). Differentiate both sides with respect to
x to above equations yields

, 2 12
Yo =Yg (z) = 275—;3 21 =2z,
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and
, s 3 t2

Differentiate the above equations with respect to x again yield

Yoz = yu(9'(2))* + g’ (z) = 2,

and
Zpr = ztt(g’(a:))2 + 29" (x) = 6z .
11. * Let

v )
T =ucos—, Yy=usin— .
U U

Find wug, uy, ve, vy. Justify the inverse function exists first.

Solution. The Jacobian matrix of x,y with respect to u,v is given by

[cos” +%sin? —sin ”]
u u u u

U v v v

siny — Zcosy  cosy

The determinant of Jacobian matrix is given by

v v : U : v
cos ¢ + = sin ¥ sin 7 140
sin? —¥cos¥ cos?

u u u u

Therefore, by Inverse Function Theorem, the inverse function exists. The Jacobians of the
given map and its inverse is related by

Ty Ty| [Uz Uy| |1 0O
yuyvvxvy_()l.

Therefore,



