Suggested Solution to Exercise 6

1. Find the tangent hyperplane passing the given point P on each of the graphs:
(a)

$$
z=x^{2}-y^{2} ; \quad P(2,-3,-5)
$$

(b)

$$
y=z-\log \frac{x}{z}, \quad P(1,1,1)
$$

(c)

$$
w=\sin \left(x^{2}+\pi z\right) ; \quad P(0,1,1,0)
$$

Solution.

(a) z is a function of x and y. Its gradient is $\nabla z=(2 x,-2 y)$. The normal vector is given by $(-2 x, 2 y, 1)$. At $(2,-3,-5)$ it is given by $(-4,-6,1)$. The tangent hyperplane at $(2,-3,-5)$ is

$$
(-4,-6,1) \cdot((x, y, z)-(2,-3,-5))=0
$$

i.e. $-4 x-6 y+z=5$.
(b) y is a function of x and z. Its gradient is given by $\nabla y=(-1 / x, 1+1 / z)$. The normal vector is given by $(1 / x, 1,-1-1 / z)$. At $(1,1,1)$ it is given by $(1,1,-2)$. The tangent hyperplane at $(1,1,1)$ is

$$
(1,1,-2) \cdot((x, y, z)-(1,1,1))=0
$$

i.e. $x+y-2 z=0$.
(c) w is a function of x, y and z. Its gradient is given by $\nabla w=\left(2 x \cos \left(x^{2}+\pi z\right), 0, \pi \cos \left(x^{2}+\right.\right.$ $\pi z))$), so $\nabla w(0,1,1)=(0,0,-\pi)$. The normal vector is $(-\nabla w, 1)=(0,0, \pi, 1)$. The tangent hyperplane at $(0,1,1,0)$ is

$$
(0,0, \pi, 1) \cdot((x, y, z, w)-(0,1,1,0))=0
$$

that is, $\pi z+w=\pi$.
2. Find the tangent plane and the normal line of each of the surfaces at the given point:
(a)

$$
x y^{2}-y z^{2}+6 x y z=6, \quad P(1,1,1)
$$

(b)

$$
x^{2} y z-e^{x y+1}=-2, \quad P(1,-1,1)
$$

You should verify that it is a surface near the given point first.

Solution.

(a) Let $f(x, y, z)=x y^{2}-y z^{2}+6 x y z$. Then $\nabla f=\left(y^{2}+6 y z, 2 x y-z^{2}+6 x z,-2 y z+6 x y\right)$ and $\nabla f(1,1,1)=(7,7,4) \neq(0,0,0)$. By Theorem $6.2 f=6$ defines a surface near $(1,1,1)$. The tangent plane at $(1,1,1)$ is given by

$$
(7,7,4) \cdot((x, y, z)-(1,1,1))=0
$$

that is, $7 x+7 y+4 z=18$. The normal line at $(1,1,1)$ is given by

$$
(1,1,1)+t(7,7,4), \quad t \in \mathbb{R}
$$

(b) Write $g(x, y, z)=x^{2} y z-e^{x y+1}$. Then

$$
\nabla g=\left(2 x y z-y e^{x y+1}, x^{2} z-x e^{x y+1}, x^{2} y\right)
$$

We have $\nabla g(1,-1,1)=(-1,0,-1) \neq(0,0,0)$. Hence $g=-2$ defines a surface near $(1,-1,1)$. The tangent plane at $(1,-1,1)$ is given by

$$
(-1,0,-1) \cdot((x, y, z)-(1,-1,1))=0,
$$

or $x+z=2$. The normal line at $(1,-1,1)$ is given by

$$
(1,-1,1)+t(-1,0,-1), \quad t \in \mathbb{R} .
$$

3. Use implicit differentiation to find
(a) y^{\prime} and $y^{\prime \prime}$ for $x^{2}+2 x y-y^{2}=a^{2}$.
(b) y^{\prime} and $y^{\prime \prime}$ for $y-\delta \sin y=x, \quad \delta \in(0,1)$.

The solutions are allowed to depend on y.

Solution.

(a) Differentiate both sides with respect to x to $x^{2}+2 x y-y^{2}=a^{2}$ yields

$$
2 x+2 y+2 x y^{\prime}-2 y y^{\prime}=0,
$$

so

$$
y^{\prime}=\frac{x+y}{y-x} .
$$

One more differentiation gives

$$
2+2 y^{\prime}+2 y^{\prime}+2 x y^{\prime \prime}-2\left(y^{\prime}\right)^{2}-2 y y^{\prime \prime}=0,
$$

that is,

$$
y^{\prime \prime}=\frac{1+2 y^{\prime}-y^{\prime 2}}{y-x} .
$$

You may plug in the expression of y^{\prime} so that the right hand side contains x and y only, but this is optional.
(b) Differentiate both sides with respect to x to $y-\delta \sin y=x$ yields

$$
y^{\prime}-y^{\prime} \delta \cos y=1,
$$

which gives

$$
y^{\prime}=\frac{1}{1-\delta \cos y} .
$$

One more differentiation gives

$$
y^{\prime \prime}-y^{\prime \prime} \delta \cos y+\left(y^{\prime}\right)^{2} \delta \sin y=0,
$$

that is,

$$
y^{\prime \prime}=\frac{\delta y^{\prime 2} \sin y}{\delta \cos y-1} .
$$

4. Use implicit differentiation to find the first and second partial derivatives of $z=z(x, y)$:
(a)

$$
x+y+z=e^{z}
$$

(b)

$$
\sin (x+y)-6 \cos (y+z)=x
$$

Solution.

(a) First we get $1+z_{x}=z_{x} e^{z}$, or

$$
z_{x}=\frac{1}{e^{z}-1}
$$

Then $z_{x x}=z_{x x} e^{z}+\left(z_{x}\right)^{2} e^{z}$ which gives

$$
z_{x x}=\frac{\left(z_{x}\right)^{2} e^{z}}{1-e^{z}}
$$

Similarly we get

$$
z_{y}=\frac{1}{e^{z}-1}
$$

and

$$
z_{y y}=\frac{\left(z_{y}\right)^{2} e^{z}}{1-e^{z}}
$$

Finally, differentiate both sides with respect to y to $1+z_{x}=z_{x} e^{z}$ yields

$$
z_{x y}=\frac{z_{x} z_{y} e^{z}}{1-e^{z}}
$$

(b)

$$
\begin{gathered}
z_{x}=\frac{1-\cos (x+y)}{6 \sin (y+z)} \\
z_{x x}=\frac{\sin (x+y)-6 \cos (y+z) z_{x}^{2}}{6 \sin (y+z)} \\
z_{y}=-\frac{\cos (x+y)+6 \sin (y+z)}{6 \sin (y+z)} \\
z_{y y}=\frac{\sin (x+y)-6 \cos (y+z)\left(1+z_{y}\right)^{2}}{6 \sin (y+z)} \\
z_{x y}=\frac{\sin (x+y)-6 \cos (y+z) z_{x}\left(1+z_{y}\right)}{6 \sin (y+z)}
\end{gathered}
$$

5. Find all first and second partial derivatives of $y=y(x, z)$ satisfying

$$
x^{2} y-6 y^{2} z+x z^{2}=8
$$

at $(1,1,-1)$.

Solution. Differentiate both sides with respect to x to $x^{2} y-6 y^{2} z+x z^{2}=8$ yields

$$
2 x y+x^{2} y_{x}-12 y y_{x} z+z^{2}=0
$$

Therefore, at the point $(1,1,-1)$,

$$
y_{x}=\frac{2 x y+z^{2}}{12 y z-x^{2}}=-\frac{3}{13}
$$

Similarly,

$$
y_{z}=\frac{-6 y^{2}+2 x z}{12 y z-x^{2}}=\frac{8}{13},
$$

and

$$
\begin{gathered}
y_{x x}=-\frac{2 y+4 x y_{x}-12\left(y_{x}\right)^{2} z}{x^{2}-12 y z}=-\frac{368}{2197}, \\
y_{z z}=-\frac{12\left(y_{z}\right)^{2} z-12 y y_{z}+2 x}{12 y z-x^{2}}=\frac{1390}{2197}, \\
y_{x z}=-\frac{2 x y_{z}-12 y_{z} y_{x} z-12 y y_{x}+2 z}{12 y z-x^{2}}=\frac{213}{2197} .
\end{gathered}
$$

(Hope the numbers are correct.)
6. Find the condition that z can be viewed as a function of x, y in the relation $F(x z, y z)=0$.

Then find z_{x} and $z_{x x}$.
Solution. Let $G(x, y, z)=F(u, v)=F(x z, y z)$. By the chain rule,

$$
G_{z}=x F_{u}(x z, y z)+y F_{v}(x z, y z) .
$$

Now, by Implicit Function Theorem, z is a function of x, y in the relation $G(z)=0$ if $G_{z} \neq 0$, i.e.

$$
x F_{u}(x z, y z)+y F_{v}(x z, y z) \neq 0 .
$$

When this holds, differentiate both sides with respect to x to $F(x z, y z)=0$ yields

$$
F_{u} \cdot\left(z+x z_{x}\right)+F_{v} \cdot\left(y z_{x}\right)=0 .
$$

Therefore,

$$
z_{x}=-\frac{z F_{u}(x z, y z)}{x F_{u}(x z, y z)+y F_{v}(x z, y z)} .
$$

Differentiate both sides with respect to x to $F_{u} \cdot\left(z+x z_{x}\right)+F_{v} \cdot\left(y z_{x}\right)=0$ yields
$F_{u u} \cdot\left(z+x z_{x}\right)^{2}+F_{u v} \cdot\left(z+x z_{x}\right)\left(y z_{x}\right)+F_{u} \cdot\left(2 z_{x}+x z_{x x}\right)+F_{v u} \cdot\left(y z_{x}\right)\left(z+x z_{x}\right)+F_{v v} \cdot\left(y z_{x}\right)^{2}+F_{v} \cdot\left(y z_{x x}\right)=0$.
Therefore,
$z_{x x}=-\frac{F_{u u} \cdot\left(z+x z_{x}\right)^{2}+F_{u v} \cdot\left(z+x z_{x}\right)\left(y z_{x}\right)+2 F_{u} \cdot z_{x}+F_{v u} \cdot\left(y z_{x}\right)\left(z+x z_{x}\right)+F_{v v} \cdot\left(y z_{x}\right)^{2}}{x F_{u}+y F_{v}}$.
7. Let Φ be a function defined on the intersection of the zero set of two functions

$$
g(x, y, z)=0, \quad h(x, y, z)=0 .
$$

Write down the condition that the intersection can be parametrized by x. Then find $\frac{d \Phi}{d x}$ and $\frac{d^{2} \Phi}{d x^{2}}$.
Solution. By Implicit Function Theorem, the intersection is a curve parametrized by x if

$$
\left|\begin{array}{ll}
g_{y} & g_{z} \\
h_{y} & h_{z}
\end{array}\right| \neq 0
$$

If so, letting $(x, y(x), z(x))$ be the curve of intersection parametrized by x, we differentiate $g(x, y(x), z(x))=0$ and $h(x, y(x), z(x))=0$ to get

$$
\left\{\begin{array}{l}
g_{x}+g_{y} y_{x}+g_{z} z_{x}=0 \\
h_{x}+h_{y} y_{x}+h_{z} z_{x}=0
\end{array}\right.
$$

Hence $\left(y_{x}, z_{x}\right)$ can be expressed in terms of first partial derivatives of g and h. Similarly, all the first and second partial derivatives of y and z can be expressed in terms of first and second partial derivatives of g and h. Therefore,

$$
\frac{d}{d x} \Phi(x, y(x), z(x))=\frac{\partial \Phi}{\partial x}+\frac{\partial \Phi}{\partial y} y_{x}+\frac{\partial \Phi}{\partial z} z_{x}
$$

and

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}} \Phi(x, y(x), z(x)) & =\left(\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y \partial x} y_{x}+\frac{\partial^{2} \Phi}{\partial z \partial x} z_{x}\right) \\
& +\left(\frac{\partial^{2} \Phi}{\partial x \partial y} y_{x}+\frac{\partial^{2} \Phi}{\partial y^{2}} y_{x}^{2}+\frac{\partial^{2} \Phi}{\partial z \partial y} y_{x} z_{x}+\frac{\partial \Phi}{\partial y} y_{x x}\right) \\
& +\left(\frac{\partial^{2} \Phi}{\partial x \partial z} z_{x}+\frac{\partial^{2} \Phi}{\partial y \partial z} y_{x} z_{x}+\frac{\partial^{2} \Phi}{\partial z^{2}} z_{x}^{2}+\frac{\partial \Phi}{\partial z} z_{x x}\right) \\
& =\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}} y_{x}^{2}+\frac{\partial^{2} \Phi}{\partial z^{2}} z_{x}^{2} \\
& +2 \frac{\partial^{2} \Phi}{\partial x \partial y} y_{x}+2 \frac{\partial^{2} \Phi}{\partial x \partial z} z_{x}+2 \frac{\partial^{2} \Phi}{\partial y \partial z} y_{x} z_{x} \\
& +\frac{\partial \Phi}{\partial y} y_{x x}+\frac{\partial \Phi}{\partial z} z_{x x}
\end{aligned}
$$

8. Explain why each of the following system defines a curve $\gamma(z)=(x(z), y(x), z)$ in \mathbb{R}^{3} and then find the first derivatives of γ :
(a)

$$
x+y+z=0, \quad x+y^{2}+z^{4}=1
$$

(b)

$$
x^{2}+y^{2}=\frac{1}{2} z^{2}, \quad x+y+z=2, \quad \text { at }(1,-1,2) .
$$

Solution.
(a) The Jacobian matrix associated to the functions $g(x, y, z)=x+y+z=0$ and $h(x, y, z)=x+y^{2}+z^{4}=0$ is given by

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 y & 4 z^{3}
\end{array}\right]
$$

We claim that this matrix has rank 2 at each $(x, y, z) \in \mathbb{R}^{3}$ satisfying the system. For, each $(x, y, z) \in \mathbb{R}^{3}$ satisfying the system, if $\left|\begin{array}{cc}1 & 1 \\ 1 & 2 y\end{array}\right| \neq 0$, then the matrix has rank 2 ; if $\left|\begin{array}{cc}1 & 1 \\ 1 & 2 y\end{array}\right|=0$, then $y=1 / 2$. Therefore, since (x, y, z) satisfies the system, we have

$$
x+\frac{1}{2}+z=0, \quad x+\frac{1}{4}+z^{4}=1
$$

which implies $z^{4}-z=5 / 4$. Now if $\left|\begin{array}{cc}1 & 1 \\ 1 & 4 z^{3}\end{array}\right|=0$, then $z=4^{-1 / 3}$, and one checks that $4^{-4 / 3}-4^{-1 / 3} \neq 5 / 4$. Therefore, $\left|\begin{array}{cc}1 & 1 \\ 1 & 4 z^{3}\end{array}\right| \neq 0$ if $\left|\begin{array}{cc}1 & 1 \\ 1 & 2 y\end{array}\right|=0$. As a result, this matrix is of rank 2 everywhere. By Theorem 6.5 , the solution set always defines a curve everywhere. When $y \neq 1 / 2$, the curve is parametrized by $z:(x(z), y(z), z)$. Its tangent is $\left(x^{\prime}(z), y^{\prime}(z), 1\right)$, where $\left(x^{\prime}, y^{\prime}\right)$ can be obtained by differentiating both sides of the two defining functions $g(x(z), y(z), z)=0$ and $h(x(z), y(z), z)=0$ with respect to z, that is, $x^{\prime}+y^{\prime}+1=0$ and $x^{\prime}+2 y y^{\prime}+4 z^{3}=0$. We get

$$
x^{\prime}=\frac{-2 y+4 z^{3}}{2 y-1}, \quad y^{\prime}=\frac{-4 z^{3}+1}{2 y-1}
$$

(b) The Jacobian matrix associated to the functions $g(x, y, z)=x^{2}+y^{2}-\frac{1}{2} z^{2}=0$ and $h(x, y, z)=x+y+z-2=0$ is given by

$$
\left[\begin{array}{ccc}
2 x & 2 y & -z \\
1 & 1 & 1
\end{array}\right]
$$

which is equal to

$$
\left[\begin{array}{ccc}
2 & -2 & -2 \\
1 & 1 & 1
\end{array}\right]
$$

at $(1,-1,2)$ Since $\left|\begin{array}{cc}2 & -2 \\ 1 & 1\end{array}\right| \neq 0$, the matrix has rank 2 at P. By Theorem 6.5 , the curve can be parametrized as $(x(z), y(z), z)$. Differentiating both sides with respect to z to $g(x(z), y(z), z)=0$ and $h(x(z), y(z), z)=0$ yields $2 x x^{\prime}+2 y y^{\prime}-z=0$ and $x^{\prime}+y^{\prime}+1=0$. At $P(1,-1,2)$, we have $2 x^{\prime}-2 y^{\prime}-2=0$ and $x^{\prime}+y^{\prime}+1=0$. We have $x^{\prime}=0$ and $y^{\prime}=-1$. The tangent vector at P is $\left(x^{\prime}, y^{\prime} z^{\prime}\right)=(0,-1,1)$ and the tangent line passing through P is given by

$$
(1,-1,2)+(0,-1,1) t, \quad t \in \mathbb{R}
$$

Note. It cannot be parametrized in x.
9. * The spherical coordinates are given by

$$
x=r \cos \theta \sin \varphi, \quad y=r \sin \theta \sin \varphi, \quad z=r \cos \varphi
$$

where

$$
r \geq 0, \quad \theta \in[0,2 \pi), \quad \varphi \in[0, \pi]
$$

(a) Give a geometric interpretation of this coordinates.
(b) Show that

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}, \quad \theta=\arctan \frac{y}{x}, \quad \text { and } \varphi=\arccos \frac{z}{r}
$$

(c) Express f_{x} and $f_{x x}$ in terms of f_{r}, f_{θ}, and f_{φ}.
(d) * Show that the three dimensional Laplace equation

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0
$$

in spherical coordinates is

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \varphi} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{1}{r^{2} \sin \varphi} \frac{\partial}{\partial \varphi}\left(\sin \varphi \frac{\partial f}{\partial \varphi}\right)=0
$$

Solution.

(a) For $r=0,(x, y, z)$ is the origin.

For $r>0,(x, y, z)$ can be regarded as a point on the sphere in \mathbb{R}^{3} with radius r. φ and θ can be regarded the "latitude" and the "longitude" of (x, y, z) on the sphere respectively.
(b) (i)

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & =(r \cos \theta \sin \varphi)^{2}+(r \sin \theta \sin \varphi)^{2}+(r \cos \varphi)^{2} \\
& =(r \sin \varphi)^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+(r \cos \varphi)^{2} \\
& =(r \sin \varphi)^{2}+(r \cos \varphi)^{2} \\
& =r^{2} .
\end{aligned}
$$

Therefore,

$$
r=\sqrt{x^{2}+y^{2}+z^{2}} .
$$

(ii) Dividing the first equation of the definition of spherical coordinates by the second equation yields

$$
\frac{y}{x}=\tan \theta .
$$

Therefore,

$$
\theta=\arctan \frac{y}{x}
$$

(iii) Directly consider the third equation of the definition of spherical coordinates, we have

$$
\varphi=\arccos \frac{z}{r}
$$

(c) We omit this lengthy but straightforward computation.
10. * Let

$$
x=t+\frac{1}{t}, \quad y=t^{2}+\frac{1}{t^{2}}, \quad z=t^{3}+\frac{1}{t^{3}} .
$$

Find $y_{x}, z_{x}, y_{x x}$ and $z_{x x}$.
Solution. Note that $\frac{d x}{d t}=1-\frac{1}{t^{2}}$. Therefore, when $t \neq \pm 1, \frac{d x}{d t} \neq 0$, and hence by Implicit Function Theorem t is a function of x, say $t=g(x)$ with

$$
g^{\prime}(x)=\frac{1}{1-\frac{1}{t^{2}}}=\frac{t^{2}}{t^{2}-1} .
$$

Now we can regard $y=y(g(x))$ and $z=z(g(x))$. Differentiate both sides with respect to x to above equations yields

$$
y_{x}=y_{t} g^{\prime}(x)=\left(2 t-\frac{2}{t^{3}}\right)\left(\frac{t^{2}}{t^{2}-1}\right)=2 x,
$$

and

$$
z_{x}=z_{t} g^{\prime}(x)=\left(3 t^{2}-\frac{3}{t^{4}}\right)\left(\frac{t^{2}}{t^{2}-1}\right)=3(y+1)
$$

Differentiate the above equations with respect to x again yield

$$
y_{x x}=y_{t t}\left(g^{\prime}(x)\right)^{2}+y_{t} g^{\prime \prime}(x)=2
$$

and

$$
z_{x x}=z_{t t}\left(g^{\prime}(x)\right)^{2}+z_{t} g^{\prime \prime}(x)=6 x
$$

11. * Let

$$
x=u \cos \frac{v}{u}, \quad y=u \sin \frac{v}{u} .
$$

Find $u_{x}, u_{y}, v_{x}, v_{y}$. Justify the inverse function exists first.
Solution. The Jacobian matrix of x, y with respect to u, v is given by

$$
\left[\begin{array}{cc}
\cos \frac{v}{u}+\frac{v}{u} \sin \frac{v}{u} & -\sin \frac{v}{u} \\
\sin \frac{v}{u}-\frac{v}{u} \cos \frac{v}{u} & \cos \frac{v}{u}
\end{array}\right] .
$$

The determinant of Jacobian matrix is given by

$$
\left|\begin{array}{cc}
\cos \frac{v}{u}+\frac{v}{u} \sin \frac{v}{u} & -\sin \frac{v}{u} \\
\sin \frac{v}{u}-\frac{v}{u} \cos \frac{v}{u} & \cos \frac{v}{u}
\end{array}\right|=1 \neq 0
$$

Therefore, by Inverse Function Theorem, the inverse function exists. The Jacobians of the given map and its inverse is related by

$$
\left[\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right]\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Therefore,

$$
\left[\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]=\left[\begin{array}{cc}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\cos \frac{v}{u} & \sin \frac{v}{u} \\
-\sin \frac{v}{u}+\frac{v}{u} \cos \frac{v}{u} & \cos \frac{v}{u}+\frac{v}{u} \sin \frac{v}{u}
\end{array}\right] .
$$

