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Suggested Solution to Exercise 6

1. Find the tangent hyperplane passing the given point P on each of the graphs:

(a)
z = x2 − y2; P (2,−3,−5).

(b)

y = z − log
x

z
, P (1, 1, 1) ,

(c)
w = sin(x2 + πz); P (0, 1, 1, 0) .

Solution.

(a) z is a function of x and y. Its gradient is ∇z = (2x,−2y). The normal vector is given
by (−2x, 2y, 1). At (2,−3,−5) it is given by (−4,−6, 1). The tangent hyperplane at
(2,−3,−5) is

(−4,−6, 1) · ((x, y, z)− (2,−3,−5)) = 0 ,

i.e.−4x− 6y + z = 5.

(b) y is a function of x and z. Its gradient is given by ∇y = (−1/x, 1 + 1/z). The normal
vector is given by (1/x, 1,−1−1/z). At (1, 1, 1) it is given by (1, 1,−2). The tangent
hyperplane at (1, 1, 1) is

(1, 1,−2) · ((x, y, z)− (1, 1, 1)) = 0,

i.e. x+ y − 2z = 0.

(c) w is a function of x, y and z. Its gradient is given by∇w = (2x cos(x2+πz), 0, π cos(x2+
πz))), so ∇w(0, 1, 1) = (0, 0,−π). The normal vector is (−∇w, 1) = (0, 0, π, 1). The
tangent hyperplane at (0, 1, 1, 0) is

(0, 0, π, 1) · ((x, y, z, w)− (0, 1, 1, 0)) = 0 ,

that is, πz + w = π.

2. Find the tangent plane and the normal line of each of the surfaces at the given point:

(a)
xy2 − yz2 + 6xyz = 6 , P (1, 1, 1) .

(b)
x2yz − exy+1 = −2 , P (1,−1, 1) .

You should verify that it is a surface near the given point first.

Solution.

(a) Let f(x, y, z) = xy2− yz2 + 6xyz. Then ∇f = (y2 + 6yz, 2xy− z2 + 6xz,−2yz+ 6xy)
and ∇f(1, 1, 1) = (7, 7, 4) 6= (0, 0, 0). By Theorem 6.2 f = 6 defines a surface near
(1, 1, 1). The tangent plane at (1, 1, 1) is given by

(7, 7, 4) · ((x, y, z)− (1, 1, 1)) = 0,

that is, 7x+ 7y + 4z = 18. The normal line at (1, 1, 1) is given by

(1, 1, 1) + t(7, 7, 4) , t ∈ R .
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(b) Write g(x, y, z) = x2yz − exy+1. Then

∇g = (2xyz − yexy+1, x2z − xexy+1, x2y) .

We have ∇g(1,−1, 1) = (−1, 0,−1) 6= (0, 0, 0). Hence g = −2 defines a surface near
(1,−1, 1). The tangent plane at (1,−1, 1) is given by

(−1, 0,−1) · ((x, y, z)− (1,−1, 1)) = 0 ,

or x+ z = 2. The normal line at (1,−1, 1) is given by

(1,−1, 1) + t(−1, 0,−1) , t ∈ R .

3. Use implicit differentiation to find

(a) y′ and y′′ for x2 + 2xy − y2 = a2.

(b) y′ and y′′ for y − δ sin y = x, δ ∈ (0, 1) .

The solutions are allowed to depend on y.

Solution.

(a) Differentiate both sides with respect to x to x2 + 2xy − y2 = a2 yields

2x+ 2y + 2xy′ − 2yy′ = 0,

so

y′ =
x+ y

y − x
.

One more differentiation gives

2 + 2y′ + 2y′ + 2xy′′ − 2(y′)2 − 2yy′′ = 0,

that is,

y′′ =
1 + 2y′ − y′2

y − x
.

You may plug in the expression of y′ so that the right hand side contains x and y
only, but this is optional.

(b) Differentiate both sides with respect to x to y − δ sin y = x yields

y′ − y′δ cos y = 1,

which gives

y′ =
1

1− δ cos y
.

One more differentiation gives

y′′ − y′′δ cos y + (y′)2δ sin y = 0,

that is,

y′′ =
δy

′2 sin y

δ cos y − 1
.

4. Use implicit differentiation to find the first and second partial derivatives of z = z(x, y):
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(a)
x+ y + z = ez ,

(b)
sin(x+ y)− 6 cos(y + z) = x .

Solution.

(a) First we get 1 + zx = zxe
z, or

zx =
1

ez − 1
.

Then zxx = zxxe
z + (zx)2ez which gives

zxx =
(zx)2ez

1− ez
.

Similarly we get

zy =
1

ez − 1
,

and

zyy =
(zy)

2ez

1− ez
.

Finally, differentiate both sides with respect to y to 1 + zx = zxe
z yields

zxy =
zxzye

z

1− ez
.

(b)

zx =
1− cos(x+ y)

6 sin(y + z)
.

zxx =
sin(x+ y)− 6 cos(y + z)z2x

6 sin(y + z)
.

zy = −cos(x+ y) + 6 sin(y + z)

6 sin(y + z)
.

zyy =
sin(x+ y)− 6 cos(y + z)(1 + zy)

2

6 sin(y + z)
.

zxy =
sin(x+ y)− 6 cos(y + z)zx(1 + zy)

6 sin(y + z)
.

5. Find all first and second partial derivatives of y = y(x, z) satisfying

x2y − 6y2z + xz2 = 8 ,

at (1, 1,−1).

Solution. Differentiate both sides with respect to x to x2y − 6y2z + xz2 = 8 yields

2xy + x2yx − 12yyxz + z2 = 0 .

Therefore, at the point (1, 1,−1),

yx =
2xy + z2

12yz − x2
= − 3

13
.
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Similarly,

yz =
−6y2 + 2xz

12yz − x2
=

8

13
,

and

yxx = −2y + 4xyx − 12(yx)2z

x2 − 12yz
= − 368

2197
,

yzz = −12(yz)
2z − 12yyz + 2x

12yz − x2
=

1390

2197
,

yxz = −2xyz − 12yzyxz − 12yyx + 2z

12yz − x2
=

213

2197
.

(Hope the numbers are correct.)

6. Find the condition that z can be viewed as a function of x, y in the relation F (xz, yz) = 0.
Then find zx and zxx.

Solution. Let G(x, y, z) = F (u, v) = F (xz, yz). By the chain rule,

Gz = xFu(xz, yz) + yFv(xz, yz) .

Now, by Implicit Function Theorem, z is a function of x, y in the relation G(z) = 0 if
Gz 6= 0, i.e.

xFu(xz, yz) + yFv(xz, yz) 6= 0.

When this holds, differentiate both sides with respect to x to F (xz, yz) = 0 yields

Fu · (z + xzx) + Fv · (yzx) = 0 .

Therefore,

zx = − zFu(xz, yz)

xFu(xz, yz) + yFv(xz, yz)
.

Differentiate both sides with respect to x to Fu · (z + xzx) + Fv · (yzx) = 0 yields

Fuu·(z+xzx)2+Fuv·(z+xzx)(yzx)+Fu·(2zx+xzxx)+Fvu·(yzx)(z+xzx)+Fvv·(yzx)2+Fv·(yzxx) = 0 .

Therefore,

zxx = −Fuu · (z + xzx)2 + Fuv · (z + xzx)(yzx) + 2Fu · zx + Fvu · (yzx)(z + xzx) + Fvv · (yzx)2

xFu + yFv
.

7. Let Φ be a function defined on the intersection of the zero set of two functions

g(x, y, z) = 0, h(x, y, z) = 0 .

Write down the condition that the intersection can be parametrized by x. Then find
dΦ

dx

and
d2Φ

dx2
.

Solution. By Implicit Function Theorem, the intersection is a curve parametrized by x
if ∣∣∣∣ gy gz

hy hz

∣∣∣∣ 6= 0 .
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If so, letting (x, y(x), z(x)) be the curve of intersection parametrized by x, we differentiate
g(x, y(x), z(x)) = 0 and h(x, y(x), z(x)) = 0 to get{

gx + gyyx + gzzx = 0,

hx + hyyx + hzzx = 0 .

Hence (yx, zx) can be expressed in terms of first partial derivatives of g and h. Similarly,
all the first and second partial derivatives of y and z can be expressed in terms of first and
second partial derivatives of g and h. Therefore,

d

dx
Φ(x, y(x), z(x)) =

∂Φ

∂x
+
∂Φ

∂y
yx +

∂Φ

∂z
zx

and

d2

dx2
Φ(x, y(x), z(x)) =

(∂2Φ
∂x2

+
∂2Φ

∂y∂x
yx +

∂2Φ

∂z∂x
zx

)
+
( ∂2Φ
∂x∂y

yx +
∂2Φ

∂y2
y2x +

∂2Φ

∂z∂y
yxzx +

∂Φ

∂y
yxx

)
+
( ∂2Φ
∂x∂z

zx +
∂2Φ

∂y∂z
yxzx +

∂2Φ

∂z2
z2x +

∂Φ

∂z
zxx

)
=
∂2Φ

∂x2
+
∂2Φ

∂y2
y2x +

∂2Φ

∂z2
z2x

+ 2
∂2Φ

∂x∂y
yx + 2

∂2Φ

∂x∂z
zx + 2

∂2Φ

∂y∂z
yxzx

+
∂Φ

∂y
yxx +

∂Φ

∂z
zxx .

8. Explain why each of the following system defines a curve γ(z) = (x(z), y(x), z) in R3 and
then find the first derivatives of γ:

(a)
x+ y + z = 0, x+ y2 + z4 = 1 ,

(b)

x2 + y2 =
1

2
z2, x+ y + z = 2, at (1,−1, 2) .

Solution.

(a) The Jacobian matrix associated to the functions g(x, y, z) = x + y + z = 0 and
h(x, y, z) = x+ y2 + z4 = 0 is given by[

1 1 1
1 2y 4z3

]
.

We claim that this matrix has rank 2 at each (x, y, z) ∈ R3 satisfying the system.

For, each (x, y, z) ∈ R3 satisfying the system, if

∣∣∣∣ 1 1
1 2y

∣∣∣∣ 6= 0, then the matrix has

rank 2; if

∣∣∣∣ 1 1
1 2y

∣∣∣∣ = 0, then y = 1/2. Therefore, since (x, y, z) satisfies the system,

we have

x+
1

2
+ z = 0, x+

1

4
+ z4 = 1 ,
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which implies z4 − z = 5/4. Now if

∣∣∣∣ 1 1
1 4z3

∣∣∣∣ = 0, then z = 4−1/3, and one checks

that 4−4/3 − 4−1/3 6= 5/4. Therefore,

∣∣∣∣ 1 1
1 4z3

∣∣∣∣ 6= 0 if

∣∣∣∣ 1 1
1 2y

∣∣∣∣ = 0. As a result,

this matrix is of rank 2 everywhere. By Theorem 6.5, the solution set always defines
a curve everywhere. When y 6= 1/2, the curve is parametrized by z : (x(z), y(z), z).
Its tangent is (x′(z), y′(z), 1), where (x′, y′) can be obtained by differentiating both
sides of the two defining functions g(x(z), y(z), z) = 0 and h(x(z), y(z), z) = 0 with
respect to z, that is, x′ + y′ + 1 = 0 and x′ + 2yy′ + 4z3 = 0. We get

x′ =
−2y + 4z3

2y − 1
, y′ =

−4z3 + 1

2y − 1
.

(b) The Jacobian matrix associated to the functions g(x, y, z) = x2 + y2 − 1

2
z2 = 0 and

h(x, y, z) = x+ y + z − 2 = 0 is given by[
2x 2y −z
1 1 1

]
,

which is equal to [
2 −2 −2
1 1 1

]
at (1,−1, 2) Since

∣∣∣∣ 2 −2
1 1

∣∣∣∣ 6= 0, the matrix has rank 2 at P . By Theorem 6.5, the

curve can be parametrized as (x(z), y(z), z). Differentiating both sides with respect
to z to g(x(z), y(z), z) = 0 and h(x(z), y(z), z) = 0 yields 2xx′ + 2yy′ − z = 0 and
x′ + y′ + 1 = 0. At P (1,−1, 2), we have 2x′ − 2y′ − 2 = 0 and x′ + y′ + 1 = 0. We
have x′ = 0 and y′ = −1. The tangent vector at P is (x′, y′z′) = (0,−1, 1) and the
tangent line passing through P is given by

(1,−1, 2) + (0,−1, 1)t , t ∈ R .

Note. It cannot be parametrized in x.

9. * The spherical coordinates are given by

x = r cos θ sinϕ, y = r sin θ sinϕ, z = r cosϕ ,

where
r ≥ 0, θ ∈ [0, 2π), ϕ ∈ [0, π] .

(a) Give a geometric interpretation of this coordinates.

(b) Show that

r =
√
x2 + y2 + z2 , θ = arctan

y

x
, and ϕ = arccos

z

r
.

(c) Express fx and fxx in terms of fr, fθ, and fϕ.

(d) * Show that the three dimensional Laplace equation

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
= 0 ,
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in spherical coordinates is

1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin2 ϕ

∂2f

∂θ2
+

1

r2 sinϕ

∂

∂ϕ

(
sinϕ

∂f

∂ϕ

)
= 0 .

Solution.

(a) For r = 0, (x, y, z) is the origin.
For r > 0, (x, y, z) can be regarded as a point on the sphere in R3 with radius r. ϕ
and θ can be regarded the “latitude” and the “longitude” of (x, y, z) on the sphere
respectively.

(b) (i)

x2 + y2 + z2 = (r cos θ sinϕ)2 + (r sin θ sinϕ)2 + (r cosϕ)2

= (r sinϕ)2(cos2 θ + sin2 θ) + (r cosϕ)2

= (r sinϕ)2 + (r cosϕ)2

= r2 .

Therefore,
r =

√
x2 + y2 + z2 .

(ii) Dividing the first equation of the definition of spherical coordinates by the second
equation yields

y

x
= tan θ .

Therefore,

θ = arctan
y

x
.

(iii) Directly consider the third equation of the definition of spherical coordinates, we
have

ϕ = arccos
z

r
.

(c) We omit this lengthy but straightforward computation.

10. * Let

x = t+
1

t
, y = t2 +

1

t2
, z = t3 +

1

t3
.

Find yx, zx, yxx and zxx.

Solution. Note that
dx

dt
= 1− 1

t2
. Therefore, when t 6= ±1,

dx

dt
6= 0, and hence by Implicit

Function Theorem t is a function of x, say t = g(x) with

g′(x) =
1

1− 1

t2

=
t2

t2 − 1
.

Now we can regard y = y(g(x)) and z = z(g(x)). Differentiate both sides with respect to
x to above equations yields

yx = ytg
′(x) =

(
2t− 2

t3

)(
t2

t2 − 1

)
= 2x ,
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and

zx = ztg
′(x) =

(
3t2 − 3

t4

)(
t2

t2 − 1

)
= 3(y + 1) .

Differentiate the above equations with respect to x again yield

yxx = ytt(g
′(x))2 + ytg

′′(x) = 2,

and
zxx = ztt(g

′(x))2 + ztg
′′(x) = 6x .

11. * Let
x = u cos

v

u
, y = u sin

v

u
.

Find ux, uy, vx, vy. Justify the inverse function exists first.

Solution. The Jacobian matrix of x, y with respect to u, v is given by[
cos vu + v

u sin v
u − sin v

u
sin v

u −
v
u cos vu cos vu

]
.

The determinant of Jacobian matrix is given by∣∣∣∣ cos vu + v
u sin v

u − sin v
u

sin v
u −

v
u cos vu cos vu

∣∣∣∣ = 1 6= 0

Therefore, by Inverse Function Theorem, the inverse function exists. The Jacobians of the
given map and its inverse is related by[

xu xv
yu yv

] [
ux uy
vx vy

]
=

[
1 0
0 1

]
.

Therefore, [
ux uy
vx vy

]
=

[
xu xv
yu yv

]−1
=

[
cos vu sin v

u
− sin v

u + v
u cos vu cos vu + v

u sin v
u

]
.


